Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.068$
$w R$ factor $=0.133$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(1-Benzylpiperidin-4-yl)- N^{\prime}-(4-methoxybenzoyl)thiourea

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, the p-anisoyl group is inclined to the central thiourea $\mathrm{N}_{2} \mathrm{CS}$ unit by $31.939(11)^{\circ}$ and the piperidine ring adopts a chair conformation. The molecule is stabilized by intra- and intermolecular interactions to form polymeric chains parallel to the $a c$ plane.

Comment

Bond lengths and angles in the molecule of the title compound (I) (Fig. 1) are in normal ranges (Allen et al., 1987) and in agreement with those found in N-(2-chlorophenyl)- N^{\prime}-(4methoxybenzoyl)thiourea (Yusof \& Yamin, 2004).

(I)

The piperidine ring adopts a chair conformation. The methoxybenzoyl and 1-benzyl-1-piperidine fragments are trans and cis, respectively, with respect to the $\mathrm{C} 8=\mathrm{S} 1$ thiono group across the $\mathrm{C} 8-\mathrm{N} 1$ and $\mathrm{C} 8-\mathrm{N} 2$ bonds. The dihedral angle between the central thiourea unit, S1/C8/N1/N2 [maximum deviation 0.007 (3) Å at C8] and the benzene ring $\mathrm{C} 1-\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{O} 2 / \mathrm{C} 21$ [maximum deviation 0.017 (3) \AA at C 21] is 31.93 (11) ${ }^{\circ}$. The benzyl fragment C14-C20 [maximum deviation $0.049(2)^{\circ}$ at C 14$]$ is inclined to the central thiourea unit and the $\mathrm{C} 1-\mathrm{C} 7 / \mathrm{O} 2 / \mathrm{C} 21$ ring by $38.17(12)$ and $48.40(11)^{\circ}$,

Figure 1
A drawing of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Received 10 June 2005 Accepted 20 June 2005 Online 24 June 2005
respectively. There are two intramolecular interactions, viz. $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~S} 1$ and $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$, resulting in the formation of pseudo-five-membered and six-membered rings $\mathrm{S} 1 \cdots \mathrm{H} 2 A-\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$ and $\mathrm{O} 1 \cdots \mathrm{H} 2 A-\mathrm{N} 2-\mathrm{C} 8-$ $\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$, respectively. In the crystal structure, the molecules are linked by intermolecular interactions, viz. N1$\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{i}}$ and $\mathrm{C} 21-\mathrm{H} 21 C \cdots \mathrm{O} 2^{\mathrm{ii}}$ (symmetry codes as in Table 2), to form polymeric chains parallel to the $a c$ plane.

Experimental

A solution of 4 -amino- N-benzylpiperidine $(0.5 \mathrm{~g}, 1.31 \mathrm{~mol})$ in acetone (50 ml) was added dropwise to an acetone solution (50 ml) containing an equimolar amount of p-methoxybenzoyl isothiocyanate. The solution was refluxed for 2 h and then poured into a beaker containing some crushed ice. The white precipitate was washed with cold ethanol and distilled water, then dried in a vacuum (yield 80%). Recrystallization from acetone gave single cystals suitable for X-ray analysis (m.p. 412.2-413.1 K). Analysis calculated: C 65.7, H 6.57, N 10.96, S 8.36 , O 8.34%; found: C 66.3 , H 6.40, N 10.69 , S 7.50 , O 9.13\%.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=383.50$
Monoclinic, $P 2_{6} / n$
$a=11.775(2) \AA$
$b=7.0646(14) \AA$
$c=24.362(5) \AA$
$\beta=94.777(4)^{\circ}$
$V=2019.6(7) \AA^{\circ}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.921, T_{\text {max }}=0.983$
10172 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.133$
$S=1.18$
3754 reflections
244 parameters
H-atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.261 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1914 \\
& \quad \text { reflections } \\
& \theta=1.6-25.5^{\circ} \\
& \mu=0.18 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.46 \times 0.20 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

3754 independent reflections
2953 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-13 \rightarrow 14$
$k=-8 \rightarrow 8$
$l=-29 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0387 P)^{2}\right. \\
& +0.7201 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.23 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The crystal packing of (I), viewed along the b axis. Dashed lines indicate hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	1.94	$2.627(3)$	136
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.98	2.80	$3.120(3)$	100
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.66	$3.516(2)$	172
$\mathrm{C} 21-\mathrm{H} 21 C \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.96	2.56	$3.438(4)$	152
Symmetry codes: (i) $x, y, z ;$ (ii) $-x+2,-y+2,-z+2 ;$ (iii) $-x+\frac{5}{2}, y-\frac{1}{2},-z+\frac{3}{2}$				

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on the parent atom with $\mathrm{C}-$ $\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{CH}_{2}\right.$ and $\mathrm{NH})$ or $1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M. \& Yamin, B. M. (2004). Acta Cryst. E60, o1998-o1999.

